On the first passage time of a simple random walk on a tree

نویسنده

  • R. B. Bapat
چکیده

We consider a simple random walk on a tree. Exact expressions are obtained for the expectation and the variance of the first passage time, thereby recovering the known result that these are integers. A relationship of the mean first passage matrix with the distance matrix is established and used to derive a formula for the inverse of the mean first passage matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index

Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...

متن کامل

Random Walk in a Random Environment and First-passage Percolation on Trees

We show that the transience or recurrence of a random walk in certain random environments on an arbitrary infinite locally finite tree is determined by the branching number of the tree, which is a measure of the average number of branches per vertex. This generalizes and unifies previous work of the authors. It also shows that the point of phase transition for edge-reinforced random walk is lik...

متن کامل

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011